资源类型

期刊论文 660

会议视频 40

会议专题 1

年份

2024 1

2023 44

2022 71

2021 48

2020 44

2019 43

2018 47

2017 55

2016 37

2015 65

2014 25

2013 37

2012 17

2011 21

2010 26

2009 17

2008 18

2007 17

2006 10

2005 8

展开 ︾

关键词

能源 15

制造强国 8

汽车强国 5

电力系统 5

信息技术 4

制造业 4

智能制造 4

海上风电 3

2021全球十大工程成就 2

2023全球十大工程成就 2

Z箍缩 2

中长期 2

光伏发电 2

全生命周期 2

制造大国 2

功率谱密度 2

发展趋势 2

可再生能源 2

可持续发展 2

展开 ︾

检索范围:

排序: 展示方式:

A unified power electronic controller for wind driven grid connected wound rotor induction generator

D. R. BINU BEN JOSE, N. AMMASAI GOUNDEN, Raavi SRI NAGA RAMESH

《能源前沿(英文)》 2013年 第7卷 第1期   页码 39-48 doi: 10.1007/s11708-012-0229-3

摘要: The implementation of a simple power converter for a wound rotor induction generator employing a three phase diode bridge rectifier and a line commutated inverter in the rotor circuit for super synchronous speeds has been proposed. The detailed working of the system in power smoothing mode and maximum power point tracking mode is presented. The current flow in the rotor circuit is controlled (by controlling the firing angle of the line commutated inverter) for controlling the stator power in both the modes. An 8 bit PIC microcontroller has been programmed to vary the firing angle of the line commutated inverter. Experiments have been carried out on a 3-phase, 3.73 kW, 400 V, 50 Hz, 4-pole, 1500 r/min wound rotor induction generator and the results obtained with the generator supplying power in both the modes are furnished. The complete scheme has been modeled using MATLAB/SIMULINK blocks and a simulation study has been conducted. The experimental waveforms are compared with the simulation results and a very close agreement between them is observed.

关键词: line commutated inverter     MPPT     power smoothing     wound rotor induction generator    

PV based water pumping system for agricultural irrigation

T A BINSHAD,K VIJAYAKUMAR,M KALEESWARI

《能源前沿(英文)》 2016年 第10卷 第3期   页码 319-328 doi: 10.1007/s11708-016-0409-7

摘要: This paper investigates the operation and analysis of the photovoltaic water pumping system in detail. Power electronic controllers were designed and developed for the water pumping system using a boost converter along with an inverter followed by an induction motor pump set. The proposed system could be employed in agricultural irrigation under any operating condition of varying natures of solar irradiances and temperatures. The configuration and implementation of the system were described in detail. Further, the detailed method of analysis and simulation characteristics of such PV water pumping system was also presented. With the concern of shortage of fossil fuel, global warming and energy security, the proposed PV based water pumping system can meet the significant demand of electricity and serve for the agricultural sector.

关键词: photovoltaic water pumping system     power electronic controller     solar irradiances and temperature    

Efficient controller area network data compression for automobile applications

Yu-jing WU,Jin-Gyun CHUNG

《信息与电子工程前沿(英文)》 2015年 第16卷 第1期   页码 70-78 doi: 10.1631/FITEE.1400136

摘要: Controller area networks (CANs) have been designed for multiplexing communication between electronic control units (ECUs) in vehicles and many high-level industrial control applications. When a CAN bus is overloaded by a large number of ECUs connected to it, both the waiting time and the error probability of the data transmission are increased. Thus, it is desirable to reduce the CAN frame length, since the duration of data transmission is proportional to the frame length. In this paper, we present a CAN message compression method to reduce the CAN frame length. Experimental results indicate that CAN transmission data can be compressed by up to 81.06% with the proposed method. By using an embedded test board, we show that 64-bit engine management system (EMS) CAN data compression can be performed within 0.16 ms; consequently, the proposed algorithm can be successfully used in automobile applications.

关键词: Controller area network (CAN)     Electronic control units (ECUs)     Data compression     Signal rearrangement    

Real-time simulation platform for photovoltaic system with a boost converter using MPPT algorithm in a DSP controller

Geethanjali PURUSHOTHAMAN, Vimisha VENUGOPALAN, Aleena Mariya VINCENT

《能源前沿(英文)》 2013年 第7卷 第3期   页码 373-379 doi: 10.1007/s11708-013-0272-8

摘要: Recently, real-time simulation of renewable energy sources are indispensible for evaluating the performance of the maximum power point tracking (MPPT) controller, especially in the photovoltaic (PV) system in order to reduce cost in the testing phase. Nowadays, real time PV simulators are obtained by using analog and/or digital components. In this paper, a real-time simulation of a PV system with a boost converter was proposed using only the digital signal processor (DSP) processor with two DC voltage sources to emulate the temperature and irradiation in the PV system. A MATLAB/Simulink environment was used to develop the real-time PV system with a boost converter into a C-program and build it into a DSP controller TMS320F28335. Besides, the performance of the real-time DSP-based PV was tested in different temperature and irradiation conditions to observe the P-V and V-I characteristics. Further, the performance of the PV with a boost converter was tested at different temperatures and irradiations using MPPT algorithms. This scheme was tested through simulation and the results were validated with that of standard conditions given in the PV data sheets. Implementation of this project helped to attract more researchers to study renewable energy applications without real sources. This might facilitate the study of PV systems in a real-time scenario and the evaluation of what should be expected for PV modules available in the market.

关键词: photovoltaic (PV) module     digital signal processor (DSP) controller     power electronic converter     real-time simulation    

Human power-based energy harvesting strategies for mobile electronic devices

Dewei JIA, Jing LIU

《能源前沿(英文)》 2009年 第3卷 第1期   页码 27-46 doi: 10.1007/s11708-009-0002-4

摘要: Energy problems arise with the proliferation of mobile electronic devices, which range from entertainment tools to life saving medical instruments. The large amount of energy consumption and increasing mobility of electronic devices make it urgent that new power sources should be developed. It has been gradually recognized that the human body is highly flexible in generating applicable power from sources of heat dissipation, joint rotation, enforcement of body weight, vertical displacement of mass centers, and even elastic deformation of tissues and other attachments. These basic combinations of daily activities or metabolic phenomena open up possibilities for harvesting energy which is strong enough to power mobile or even implantable medical devices which could be used for a long time or be recharged permanently. A comprehensive review is presented in this paper on the latest developed or incubating electricity generation methods based on human power which would serve as promising candidates for future mobile power. Thermal and mechanical energy, investigated more thoroughly so far, will particularly be emphasized. Thermal energy relies on body heat and employs the property of thermoelectric materials, while mechanical energy is generally extracted in the form of enforcement or displacement excitation. For illustration purposes, the piezoelectric effect, dielectric elastomer and the electromagnetic induction couple, which can convert force directly into electricity, were also evaluated. Meanwhile, examples are given to explain how to adopt inertia generators for converting displacement energy via piezoelectric, electrostatic, electromagnetic or magnetostrictive vibrators. Finally, future prospects in harvesting energy from human power are made in conclusion.

关键词: mobile electronic device     human power     energy harvesting     micro/miniaturized generator     battery     green energy    

Application of fuzzy logic control algorithm as stator power controller of a grid-connected doubly-fed

Ridha CHEIKH, Arezki MENACER, Said DRID, Mourad TIAR

《能源前沿(英文)》 2013年 第7卷 第1期   页码 49-55 doi: 10.1007/s11708-012-0217-7

摘要: This paper discusses the power outputs control of a grid-connected doubly-fed induction generator (DFIG) for a wind power generation systems. The DFIG structure control has a six diode rectifier and a PWM IGBT converter in order to control the power outputs of the DFIG driven by wind turbine. So, to supply commercially the electrical power to the grid without any problems related to power quality, the active and reactive powers ( , ) at the stator side of the DFIG are strictly controlled at a required level, which, in this paper, is realized with an optimized fuzzy logic controller based on the grid flux oriented control, which gives an optimal operation of the DFIG in sub-synchronous region, and the control of the stator power flow with the possibility of keeping stator power factor at a unity.

关键词: doubly-fed induction generator (DFIG)     vector control     fuzzy logic controller     optimization     power factor unity     active and reactive power    

Novel power capture optimization based sensorless maximum power point tracking strategy and internalmodel controller for wind turbines systems driven SCIG

Ali EL YAAKOUBI,Kamal ATTARI,Adel ASSELMAN,Abdelouahed DJEBLI

《能源前沿(英文)》 2019年 第13卷 第4期   页码 742-756 doi: 10.1007/s11708-017-0462-x

摘要: Under the trends to using renewable energy sources as alternatives to the traditional ones, it is important to contribute to the fast growing development of these sources by using powerful soft computing methods. In this context, this paper introduces a novel structure to optimize and control the energy produced from a variable speed wind turbine which is based on a squirrel cage induction generator (SCIG) and connected to the grid. The optimization strategy of the harvested power from the wind is realized by a maximum power point tracking (MPPT) algorithm based on fuzzy logic, and the control strategy of the generator is implemented by means of an internal model (IM) controller. Three IM controllers are incorporated in the vector control technique, as an alternative to the proportional integral (PI) controller, to implement the proposed optimization strategy. The MPPT in conjunction with the IM controller is proposed as an alternative to the traditional tip speed ratio (TSR) technique, to avoid any disturbance such as wind speed measurement and wind turbine (WT) characteristic uncertainties. Based on the simulation results of a six KW-WECS model in Matlab/Simulink, the presented control system topology is reliable and keeps the system operation around the desired response.

关键词: power optimization     wind energy conversion system     maximum power point tracking (MPPT)     fuzzy logic     internal model (IM) controller    

Emerging technologies to power next generation mobile electronic devices using solar energy

Dewei JIA , Yubo DUAN , Jing LIU ,

《能源前沿(英文)》 2009年 第3卷 第3期   页码 262-288 doi: 10.1007/s11708-009-0015-z

摘要: Mobile electronic devices such as MP3, mobile phones, and wearable or implanted medical devices have already or will soon become a necessity in peoples’ lives. However, the further development of these devices is restricted not only by the inconvenient charging process of the power module, but also by the soaring prices of fossil fuel and its downstream chain of electricity manipulation. In view of the huge amount of solar energy fueling the world biochemically and thermally, a carry-on electricity harvester embedded in portable devices is emerging as a most noteworthy research area and engineering practice for a cost efficient solution. Such a parasitic problem is intrinsic in the next generation portable devices. This paper is dedicated to presenting an overview of the photovoltaic strategy in the chain as a reference for researchers and practitioners committed to solving the problem.

关键词: photovoltaic conversion     energy harvesting     solar cell     maximum power point track algorithm     PV electricity storage     mobile/standalone PV application    

Robust switched fractional controller for performance improvement of single phase active power filter

H. AFGHOUL,F. KRIM,D. CHIKOUCHE,A. BEDDAR

《能源前沿(英文)》 2016年 第10卷 第2期   页码 203-212 doi: 10.1007/s11708-015-0381-7

摘要: A novel controller is proposed to regulate the DC-link voltage of a single phase active power filter (SPAPF). The proposed switched fractional controller (SFC) consists of a conventional PI controller, a fractional order PI (FO-PI) controller and a decision maker that switches between them. Commonly, the conventional PI controller is used in regulation loops due to its advantages in steady-state but it is limited in transient state. On the other hand, the FO-PI controller overcomes these drawbacks but it causes dramatic degradation in control performances in steady-state because of the fractional calculus theory and the approximation method used to implement this kind of controller. Thus, the purpose of this paper is to switch to the PI controller in steady-state to obtain the best power quality and to switch to the FO-PI controller when external disturbances are detected to guarantee a fast transient state. To investigate the efficiency and accuracy of the SFC considering all robustness tests, an experimental setup has been established. The results of the SFC fulfill the requirements, confirm its high performances in steady and transient states and demonstrate its feasibility and effectiveness. The experiment results have satisfied the limit specified by the IEEE harmonic standard 519.

关键词: conventional PI controller     fractional calculus (FC)     total harmonic distortion (THD)     Oustaloup continuous approximation (OCA)     single phase active power filter (SPAPF)    

Impact of wind power generating system integration on frequency stabilization in multi-area power systemwith fuzzy logic controller in deregulated environment

Y. K. BHATESHVAR,H. D. MATHUR,H. SIGUERDIDJANE

《能源前沿(英文)》 2015年 第9卷 第1期   页码 7-21 doi: 10.1007/s11708-014-0338-2

摘要: Among the available options for renewable energy integration in existing power system, wind power is being considered as one of the suited options for future electrical power generation. The major constraint of wind power generating system (WPGS) is that it does not provide inertial support because of power electronic converters between the grid and the WPGS to facilitate frequency stabilization. The proposed control strategy suggests a substantial contribution to system inertia in terms of short-term active power support in a two area restructured power system. The control scheme uses fuzzy logic based design and takes frequency deviation as input to provide quick active power support, which balances the drop in frequency and tie-line power during transient conditions. This paper presents a comprehensive study of the wind power impact with increasing wind power penetration on frequency stabilization in restructured power system scenario. Variation of load conditions are also analyzed in simulation studies for the same power system model with the proposed control scheme. Simulation results advocates the justification of control scheme over other schemes.

关键词: two area power system     automatic generation control     wind power generating system (WPGS)     deregulated environment     fuzzy logic controller (FLC)    

Experimental investigation of liquid metal alloy based mini-channel heat exchanger for high power electronic

Manli LUO, Jing LIU

《能源前沿(英文)》 2013年 第7卷 第4期   页码 479-486 doi: 10.1007/s11708-013-0277-3

摘要: There is currently a growing demand for developing efficient techniques for cooling integrated electronic devices with ever increasing heat generation power. To better tackle the high-density heat dissipation difficulty within the limited space, this paper is dedicated to clarify the heat transfer behaviors of the liquid metal flowing in mini-channel exchangers with different geometric configurations. A series of comparative experiments using liquid metal alloy Ga68%In20%Sn12% as coolant were conducted under prescribed mass flow rates in three kinds of heat exchangers with varied geometric sizes. Meanwhile, numerical simulations for the heat exchangers under the same working conditions were also performed which well interpreted the experimental measurements. The simulated heat sources were all cooled down by these three heat dissipation apparatuses and the exchanger with the smallest channel width was found to have the largest mean heat transfer coefficient at all conditions due to its much larger heat transfer area. Further, the present work has also developed a correlation equation for characterizing the Nusselt number depending on Peclet number, which is applicable to the low Peclet number case with constant heat flux in the hydrodynamically developed and thermally developing region in the rectangular channel. This study is expected to provide valuable reference for designing future liquid metal based mini-channel heat exchanger.

关键词: heat exchanger     liquid metal     mini-channel     heat dissipation     heat transfer coefficient    

UPFC setting to avoid active power flow loop considering wind power uncertainty

Shenghu LI, Ting WANG

《能源前沿(英文)》 2023年 第17卷 第1期   页码 165-175 doi: 10.1007/s11708-020-0686-z

摘要: The active power loop flow (APLF) may be caused by impropriate network configuration, impropriate parameter settings, and/or stochastic bus powers. The power flow controllers, e.g., the unified power flow controller (UPFC), may be the reason and the solution to the loop flows. In this paper, the critical existence condition of the APLF is newly integrated into the simultaneous power flow model for the system and UPFC. Compared with the existing method of alternatively solving the simultaneous power flow and sensitivity-based approaching to the critical existing condition, the integrated power flow needs less iterations and calculation time. Besides, with wind power fluctuation, the interval power flow (IPF) is introduced into the integrated power flow, and solved with the affine Krawcyzk iteration to make sure that the range of active power setting of the UPFC not yielding the APLF. Compared with Monte Carlo simulation, the IPF has the similar accuracy but less time.

关键词: active power loop flow (APLF)     unified power flow controller (UPFC)     wind power uncertainty     interval power flow (IPF)    

Performance of PI controller for control of active and reactive power in DFIG operating in a grid-connected

Azzouz TAMAARAT,Abdelhamid BENAKCHA

《能源前沿(英文)》 2014年 第8卷 第3期   页码 371-378 doi: 10.1007/s11708-014-0318-6

摘要: Due to several factors, wind energy becomes an essential type of electricity generation. The share of this type of energy in the network is becoming increasingly important. The objective of this work is to present the modeling and control strategy of a grid connected wind power generation scheme using a doubly fed induction generator (DFIG) driven by the rotor. This paper is to present the complete modeling and simulation of a wind turbine driven DFIG in the second mode of operating (the wind turbine pitch control is deactivated). It will introduce the vector control, which makes it possible to control independently the active and reactive power exchanged between the stator of the generator and the grid, based on vector control concept (with stator flux or voltage orientation) with classical PI controllers. Various simulation tests are conducted to observe the system behavior and evaluate the performance of the control for some optimization criteria (energy efficiency and the robustness of the control). It is also interesting to play on the quality of electric power by controlling the reactive power exchanged with the grid, which will facilitate making a local correction of power factor.

关键词: wind power     doubly fed induction generator (DFIG)     vector control     active power     reactive power     maximum power point tracking (MPPT)    

An interval type-2 fuzzy logic controller for TCSC to improve the damping of power system oscillations

Manoj Kumar PANDA, Gopinath PILLAI, Vijay KUMAR

《能源前沿(英文)》 2013年 第7卷 第3期   页码 307-316 doi: 10.1007/s11708-013-0269-3

摘要: In this paper an interval type-2 fuzzy logic controller (IT2FLC) was proposed for thyristor controlled series capacitor (TCSC) to improve power system damping. For controller design, memberships of system variables were represented using interval type-2 fuzzy sets. The three-dimensional membership function of type-2 fuzzy sets provided additional degree of freedom that made it possible to directly model and handle uncertainties. Simulations conducted on a single machine infinite bus (SMIB) power system showed that the proposed controller was more effective than particle swarm optimization (PSO) tuned and type-1 fuzzy logic (T1FL) based damping controllers. Robust performance of the proposed controller was also validated at different operating conditions, various disturbances and parameter variation of the transmission line parameters.

关键词: power system oscillations     thyristor controlled series capacitor (TCSC)     type-2 fuzzy logic system     interval type-2 fuzzy logic controller (IT2FLC)    

Power quality improvement using fuzzy logic controller for five-level shunt active power filter under

Amar BENAISSA,Boualaga RABHI,Ammar MOUSSI

《能源前沿(英文)》 2014年 第8卷 第2期   页码 212-220 doi: 10.1007/s11708-013-0284-4

摘要: In this paper, a five-level inverter is used as a shunt active power filter (APF), taking advantages of the multilevel inverter such as low harmonic distortion and reduced switching losses. It is used to compensate reactive power and eliminate harmonics drawn from a thyristor rectifier feeding an inductive load (RL) under distorted voltage conditions. The APF control strategy is based on the use of self-tuning filters (STF) for reference current generation and a fuzzy logic current controller. The use of STF instead of classical extraction filters allows extracting directly the voltage and current fundamental components in the - axis without phase locked loop (PLL). The MATLAB fuzzy logic toolbox is used for implementing the fuzzy logic control algorithm. The obtained results show that the proposed shunt APF controller has produced a sinusoidal supply current with low harmonic distortion and in phase with the line voltage.

关键词: active power filter (APF)     harmonics isolator     distorted voltage conditions     self-tuning filters (STF)     fuzzy logic control    

标题 作者 时间 类型 操作

A unified power electronic controller for wind driven grid connected wound rotor induction generator

D. R. BINU BEN JOSE, N. AMMASAI GOUNDEN, Raavi SRI NAGA RAMESH

期刊论文

PV based water pumping system for agricultural irrigation

T A BINSHAD,K VIJAYAKUMAR,M KALEESWARI

期刊论文

Efficient controller area network data compression for automobile applications

Yu-jing WU,Jin-Gyun CHUNG

期刊论文

Real-time simulation platform for photovoltaic system with a boost converter using MPPT algorithm in a DSP controller

Geethanjali PURUSHOTHAMAN, Vimisha VENUGOPALAN, Aleena Mariya VINCENT

期刊论文

Human power-based energy harvesting strategies for mobile electronic devices

Dewei JIA, Jing LIU

期刊论文

Application of fuzzy logic control algorithm as stator power controller of a grid-connected doubly-fed

Ridha CHEIKH, Arezki MENACER, Said DRID, Mourad TIAR

期刊论文

Novel power capture optimization based sensorless maximum power point tracking strategy and internalmodel controller for wind turbines systems driven SCIG

Ali EL YAAKOUBI,Kamal ATTARI,Adel ASSELMAN,Abdelouahed DJEBLI

期刊论文

Emerging technologies to power next generation mobile electronic devices using solar energy

Dewei JIA , Yubo DUAN , Jing LIU ,

期刊论文

Robust switched fractional controller for performance improvement of single phase active power filter

H. AFGHOUL,F. KRIM,D. CHIKOUCHE,A. BEDDAR

期刊论文

Impact of wind power generating system integration on frequency stabilization in multi-area power systemwith fuzzy logic controller in deregulated environment

Y. K. BHATESHVAR,H. D. MATHUR,H. SIGUERDIDJANE

期刊论文

Experimental investigation of liquid metal alloy based mini-channel heat exchanger for high power electronic

Manli LUO, Jing LIU

期刊论文

UPFC setting to avoid active power flow loop considering wind power uncertainty

Shenghu LI, Ting WANG

期刊论文

Performance of PI controller for control of active and reactive power in DFIG operating in a grid-connected

Azzouz TAMAARAT,Abdelhamid BENAKCHA

期刊论文

An interval type-2 fuzzy logic controller for TCSC to improve the damping of power system oscillations

Manoj Kumar PANDA, Gopinath PILLAI, Vijay KUMAR

期刊论文

Power quality improvement using fuzzy logic controller for five-level shunt active power filter under

Amar BENAISSA,Boualaga RABHI,Ammar MOUSSI

期刊论文